Review: Derivative of Trig Functions - 10/26/16

1 Derivative of Sine

The red is the graph of $\sin (x)$ and the blue is the graph of its derivative.

Derivative of $\sin : \frac{d}{d x} \sin (x)=\cos (x)$.
Example 1.0.1 What is $\frac{d}{d x} x^{3} \sin (x)$? Let $f(x)=x^{3}$ and $g(x)=\sin (x)$, so $f^{\prime}(x)=3 x^{2}$ and $g^{\prime}(x)=\cos (x)$. Then by the product rule, we have $\frac{d}{d x} x^{3} \sin (x)=3 x^{2} \sin (x)+x^{3} \cos (x)$.

Example 1.0.2 What is $\frac{d}{d x} \frac{3 \sin (x)}{x^{2}}$? Let $f(x)=3 \sin (x)$ and $g(x)=x^{2}$, so $f^{\prime}(x)=3 \cos (x)$ and $g^{\prime}(x)=2 x$. Then by the quotient rule, we have $\frac{d}{d x} \frac{3 \sin (x)}{x^{2}}=\frac{3 \cos (x) x^{2}-2 x(3 \sin (x))}{x^{4}}=\frac{3 x^{2} \cos (x)-6 x \sin (x)}{x^{4}}$.

2 Derivative of Cosine

The red is the graph of $\cos (x)$ and the blue is the graph of the derivative.

Derivative of $\cos : \frac{d}{d x} \cos (x)=-\sin (x)$.
Example 2.0.3 What is $\frac{d}{d x} \sin (x)+\cos (x)$? It is $\cos (x)-\sin (x)$.
Example 2.0.4 What is $\frac{d}{d x} \sin (x) \cos (x)$? Let $f(x)=\sin (x)$ and $g(x)=\cos (x)$, so $f^{\prime}(x)=\cos (x)$ and $g^{\prime}(x)=-\sin (x)$. Then by the product rule, we have $\cos (x) \cos (x)-\sin (x) \sin (x)=\cos ^{2}(x)-$ $\sin ^{2}(x)$.

Example 2.0.5 What is $\frac{d^{2}}{d x^{2}} \sin (x) \cos (x)$? We can just take the derivative of the derivative, which we found above, so $\frac{d^{2}}{d x^{2}} \sin (x) \cos (x)=\frac{d}{d x} \cos ^{2}(x)-\sin ^{2}(x)$. Let's do $\frac{d}{d x} \cos ^{2}(x)$ first. We can do this using the product rule: let $f(x)=\cos (x)$ and $g(x)=\cos (x)$, so $f^{\prime}(x)=g^{\prime}(x)=$ $-\sin (x)$. Then $\frac{d}{d x} \cos ^{2}(x)=-\sin (x) \cos (x)-\sin (x) \cos (x)=-2 \sin (x) \cos (x)$. Now let's do $\frac{d}{d x} \sin ^{2}(x)$: let $h(x)=k(x)=\sin (x)$, so $h^{\prime}(x)=k^{\prime}(x)=\cos (x)$. Then $\frac{d}{d x} \sin ^{2}(x)=\cos (x) \sin (x)+$ $\cos (x) \sin (x)=2 \cos (x) \sin (x)$. Now we subtract them to get $\frac{d^{2}}{d x^{2}} \sin (x) \cos (x)=\frac{d}{d x} \cos ^{2}(x)-$ $\sin ^{2}(x)=-2 \sin (x) \cos (x)-2 \cos (x) \sin (x)=-4 \sin (x) \cos (x)$.

3 Derivative of Tangent

It turns out that looking at the graph for $\tan (x)$ is not incredibly illuminating. However, we can do it using algebra!

Example 3.0.6 What is $\frac{d}{d x} \tan (x)$? This is the same as asking what is $\frac{d}{d x} \frac{\sin (x)}{\cos (x)}$. We can use the quotient rule here. Let $f(x)=\sin (x)$ and $g(x)=\cos (x)$, so $f^{\prime}(x)=\cos (x)$ and $g^{\prime}(x)=-\sin (x)$. Then $\frac{d}{d x} \tan (x)=\frac{\cos (x) \cos (x)-(-\sin (x) \sin (x))}{\cos ^{2}(x)}=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}=\frac{1}{\cos ^{2}(x)}=\sec ^{2}(x)$.

Derivative of $\tan : \frac{d}{d x} \tan (x)=\sec ^{2}(x)$.
Example 3.0.7 What is $\frac{d}{d x} \frac{\tan (x)}{x}$? Let $f(x)=\tan (x)$ and $g(x)=x$, then $f^{\prime}(x)=\sec ^{2}(x)$ and $g^{\prime}(x)=1$. Then by the quotient rule, I have $\frac{d}{d x} \frac{\tan (x)}{x}=\frac{x \sec ^{2}(x)-\tan (x)}{x^{2}}$.

Example 3.0.8 What is $\frac{d}{d x} \cot (x)$? We can think of this as $\frac{d}{d x} \frac{1}{\tan (x)}$. Let $f(x)=1$ and $g(x)=$ $\tan (x)$, so $f^{\prime}(x)=0$ and $g^{\prime}(x)=\sec ^{2}(x)$. Then by the quotient rule, we have

$$
\frac{d}{d x} \cot (x)=\frac{-\sec ^{2}(x)}{\tan ^{2}(x)}=\frac{-\frac{1}{\cos ^{2}(x)}}{\frac{\sin ^{2}(x)}{\cos ^{2}(x)}}=-\frac{1}{\sin ^{2}(x)}=-\csc ^{2}(x)
$$

Practice Problems

Look at the problems and solutions that we did in class.

