Review: Derivative of Trig Functions - 10/26/16

1 Derivative of Sine

The red is the graph of sin(x) and the blue is the graph of its derivative.

Derivative of sin: $\frac{d}{dx}\sin(x) = \cos(x)$.

Example 1.0.1 What is $\frac{d}{dx}x^3\sin(x)$? Let $f(x) = x^3$ and $g(x) = \sin(x)$, so $f'(x) = 3x^2$ and $g'(x) = \cos(x)$. Then by the product rule, we have $\frac{d}{dx}x^3\sin(x) = 3x^2\sin(x) + x^3\cos(x)$.

Example 1.0.2 What is $\frac{d}{dx} \frac{3\sin(x)}{x^2}$? Let $f(x) = 3\sin(x)$ and $g(x) = x^2$, so $f'(x) = 3\cos(x)$ and g'(x) = 2x. Then by the quotient rule, we have $\frac{d}{dx} \frac{3\sin(x)}{x^2} = \frac{3\cos(x)x^2 - 2x(3\sin(x))}{x^4} = \frac{3x^2\cos(x) - 6x\sin(x)}{x^4}$.

2 Derivative of Cosine

The red is the graph of cos(x) and the blue is the graph of the derivative.

Derivative of cos: $\frac{d}{dx}\cos(x) = -\sin(x)$.

Example 2.0.3 What is $\frac{d}{dx}\sin(x) + \cos(x)$? It is $\cos(x) - \sin(x)$.

Example 2.0.4 What is $\frac{d}{dx}\sin(x)\cos(x)$? Let $f(x) = \sin(x)$ and $g(x) = \cos(x)$, so $f'(x) = \cos(x)$ and $g'(x) = -\sin(x)$. Then by the product rule, we have $\cos(x)\cos(x) - \sin(x)\sin(x) = \cos^2(x) - \sin^2(x)$.

Example 2.0.5 What is $\frac{d^2}{dx^2}\sin(x)\cos(x)$? We can just take the derivative of the derivative, which we found above, so $\frac{d^2}{dx^2}\sin(x)\cos(x) = \frac{d}{dx}\cos^2(x) - \sin^2(x)$. Let's do $\frac{d}{dx}\cos^2(x)$ first. We can do this using the product rule: let $f(x) = \cos(x)$ and $g(x) = \cos(x)$, so $f'(x) = g'(x) = -\sin(x)$. Then $\frac{d}{dx}\cos^2(x) = -\sin(x)\cos(x) - \sin(x)\cos(x) = -2\sin(x)\cos(x)$. Now let's do $\frac{d}{dx}\sin^2(x)$: let $h(x) = k(x) = \sin(x)$, so $h'(x) = k'(x) = \cos(x)$. Then $\frac{d}{dx}\sin^2(x) = \cos(x)\sin(x) + \cos(x)\sin(x) = 2\cos(x)\sin(x)$. Now we subtract them to get $\frac{d^2}{dx^2}\sin(x)\cos(x) = \frac{d}{dx}\cos^2(x) - \sin^2(x) = -2\sin(x)\cos(x) - 2\cos(x)\sin(x) = -4\sin(x)\cos(x)$.

3 Derivative of Tangent

It turns out that looking at the graph for tan(x) is not incredibly illuminating. However, we can do it using algebra!

Example 3.0.6 What is $\frac{d}{dx} \tan(x)$? This is the same as asking what is $\frac{d}{dx} \frac{\sin(x)}{\cos(x)}$. We can use the quotient rule here. Let $f(x) = \sin(x)$ and $g(x) = \cos(x)$, so $f'(x) = \cos(x)$ and $g'(x) = -\sin(x)$. Then $\frac{d}{dx} \tan(x) = \frac{\cos(x)\cos(x)-(-\sin(x)\sin(x))}{\cos^2(x)} = \frac{\cos^2(x)+\sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sec^2(x)$.

Derivative of $\tan: \frac{d}{dx} \tan(x) = \sec^2(x).$

Example 3.0.7 What is $\frac{d}{dx} \frac{\tan(x)}{x}$? Let $f(x) = \tan(x)$ and g(x) = x, then $f'(x) = \sec^2(x)$ and g'(x) = 1. Then by the quotient rule, I have $\frac{d}{dx} \frac{\tan(x)}{x} = \frac{x \sec^2(x) - \tan(x)}{x^2}$.

Example 3.0.8 What is $\frac{d}{dx} \cot(x)$? We can think of this as $\frac{d}{dx} \frac{1}{\tan(x)}$. Let f(x) = 1 and $g(x) = \tan(x)$, so f'(x) = 0 and $g'(x) = \sec^2(x)$. Then by the quotient rule, we have

$$\frac{d}{dx}\cot(x) = \frac{-\sec^2(x)}{\tan^2(x)} = \frac{-\frac{1}{\cos^2(x)}}{\frac{\sin^2(x)}{\cos^2(x)}} = -\frac{1}{\sin^2(x)} = -\csc^2(x).$$

Practice Problems

Look at the problems and solutions that we did in class.